Math 43		
Quiz 4 Version Y	Page	1
Tue Oct 23, 2012		

NAMES	YOU	ASKED	TO	BE	CALLED	IN	CLASS:	
-------	-----	--------------	----	----	---------------	----	--------	--

&

SCORE: /35 POINTS

NO CALCULATORS ALLOWED

SHOW PROPER WORK & SIMPLIFY YOUR FINAL ANSWER TO RECEIVE FULL CREDIT

Consider the polar equation $r = 1 - 2\cos 2\theta$.

SCORE: / 13 PTS

[a] Your partner runs the following symmetry tests, and gets the following correct results:

If you replace (r, θ) with $(-r, \theta)$, you can **NOT** simplify the equation back to the original equation.

If you replace (r, θ) with $(-r, -\theta)$, you can **NOT** simplify the equation back to the original equation.

If you replace (r, θ) with $(r, -\theta)$, you can simplify the equation back to the original equation.

Based only on the tests above, what can you conclude about whether the graph of the equation is symmetric

[i] with respect to $\theta = \frac{\pi}{2}$?

CAN'T TELL E SYMMETRICE

with respect to the polar axis?

Determine whether the graph is symmetric with respect to the pole, the polar axis, and $\theta = \frac{\pi}{2}$. [b]

You may use any or all of the test results in part [a] without rerunning the tests.

POLE $(r, \pi+\theta)$: $r=1-2\cos 2(\pi+\theta)$, (1) = $1-2\cos(2\pi+2\theta)$

 $= 1 - 2 \left[\cos 2\pi \cos 2\theta - \sin 2\pi \sin 2\theta\right]$ $= 1 - 2 \left[\cos 2\pi \cos 2\theta - \sin 2\pi \sin 2\theta\right]$ $= 1 - 2 \left[\cos 2\pi \cos 2\theta - \sin 2\pi \sin 2\theta\right]$ Symmetry cover Polar AXIS, Pole $\theta = \frac{\pi}{4}$ What is the minimum interval for θ that you would need to plot points before using symmetry to finish drawing the graph?

[c]

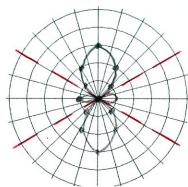
[0, 7]

[d] Find the zeros of the polar equation in the minimum interval from part [c].

0=1-2cos 200 0 \(\text{Q} \) \(\text{Cos 20} = \frac{1}{2} \) \(\text{D} \) \(\text{2} \) \(\text{C} \) \(\text{T} \) \(\text{C} \) \(\text{T} \) \(\text{C} \) \(

Graph the polar equation using symmetry, zeros and any other additional points.

NOTE: You must find the value of r for all common angles from the minimum interval.


[e]

0 1-2cos2(0)=-1](=)

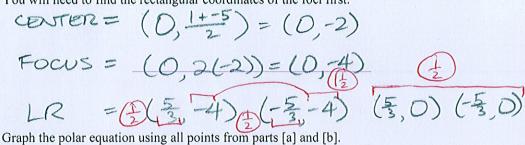
E 1-2cos2(E)=0

 $\frac{\pi}{4}$ $[-2\cos 2(\pi)=1]$ $\frac{\pi}{2}$ $[-2\cos 2(\pi)=2]$ $\frac{\pi}{2}$ $[-2\cos 2(\pi)=3]$ $\frac{\pi}{2}$

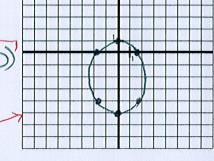
NO CALCULATORS ALLOWED

SHOW PROPER WORK & SIMPLIFY YOUR FINAL ANSWER TO RECEIVE FULL CREDIT

Consider the polar equation $r = \frac{5}{3 + 2\sin\theta}$


SCORE: _____/ 9 PTS

Find the rectangular coordinates of all intercepts of the graph. NOTE: Do NOT convert the equation to rectangular form. [a]



Find the rectangular coordinates of all latera recta of the graph. NOTE: "Latera recta" is the plural of "latus rectum". [b]

You will need to find the rectangular coordinates of the foci first.

[c]

Find the polar equation of the ellipse with foci at the pole and vertices at polar coordinates (3,0) and $(2,\pi)$.

SCORE: _____ / 7 PTS

Simplify your final answer.

GRADED BY ME

parametric equations $x = \frac{1}{t+2}$. SCORE: _____/6 PTS Eliminate the parameter to find the rectangular equation corresponding to the parametric equations

Simplify your final answer.

$$x(t+2)=1$$
 $t+2=\frac{1}{x}$
 $y=\frac{x-2}{x-3}, x$
 $y=\frac{1-2x}{1-3x}$